Interfacial Tension of Poly(ethylene glycol) + Salt + Water Systems

You-Ting Wu, Zi-Qiang Zhu,* and Le-He Mei

Chemical Engineering Department, Zhejiang University, Hangzhou 310027, P.R. China

The interfacial tension of eight poly(ethylene glycol) (PEG) + salt aqueous two-phase systems, PEG + $(NH_4)_2SO_4$, PEG + K_2HPO_4 , PEG + $xK_2HPO_4 + KH_2PO_4$ (*x* is the molar ratio of K_2HPO_4 to KH_2PO_4 , *x* = 1.42, pH = 7.0), PEG4000 + $xK_2HPO_4 + KH_2PO_4$ (at different pH or *x* values), PEG + K_3PO_4 , PEG + Na_2SO_4 , PEG + $MgSO_4$, and PEG + Na_2CO_3 systems, is reported. The influence of polymer molecular weight and concentration, salt concentration and type, and the total solute compositions on the interfacial tension has been studied.

Introduction

Aqueous two-phase extraction is useful for separating materials of biological origin. In this technique, the interfacial tension (σ) between the phases is an important determining factor that influences the partitioning behavior of particles or cells because such materials usually distribute themselves between the interface and one of the two bulk phases, leaving the other phase depleted of particles (Bamberger et al., 1984). The degree to which interfacial adsorption will occur increases with increasing σ because of the decrease in free energy associated with loss of free liquid-liquid interfacial area between the native phases. To understand the mechanism behind the distribution of particles in aqueous two-phase systems, it is of interest to know the properties of the liquid-liquid interface and particularly the values of the interfacial tension.

Ryden and Albertsson (1971) were the first to report results on the interfacial tension of polyethylene glycol + dextran + water systems. They investigated the effect of total polymer concentration (tie-line length) on interfacial tension. Other studies of the interfacial tension of PEG + dextran systems include those of Bamberger et al. (1984) and Forciniti et al. (1990). Bamberger et al. studied the effect of the type and concentration of salt additives on the interfacial tension, while Forciniti et al. systematically determined the interfacial tension and explored the influence of polymer molecular weight, total polymer concentration, and temperature on the interfacial tension. As to polymer + salt + water systems, Jafarabad et al. (1992) measured the interfacial tension of PEG4000 + phosphate (pH = 7.0) and PEG4000 + Na₂SO₄ systems at 30 °C, using a stalogmometer with the determination error of 10%. Except for this, there are few published interfacial tension data, or descriptions of the factors that influence interfacial tension.

This study presents data on interfacial tension for different polymer + salt + water systems and explores the influence of the total solute concentration, polymer molecular weight and concentration, and salt type and concentration on the interfacial tension.

Materials and Methods

Materials. Poly(ethylene glycols) were purchased from Shanghai Chemical Reagent Factory (P.R. China), with six different number average molecular weights (M_n) of 1000 (950–1050), 1500 (1300–1700), 2000 (1900–2100), 4000

(3000-4500), 6000 (5500-7500), and 20 000 (18 000-20 000). All other chemicals were analytical grade with purities of more than 99.5 mass %. Stock aqueous solutions of PEG (30-50 mass %) and salt (30-50 mass %) were prepared using double-distilled water and were checked by measuring the dry mass (vacuum drying).

Methods. Phase systems of 80 g each were prepared by mass from the PEG and salt stock solutions (thoroughly mixed before weighing). Water was added to reach the final mass. After thorough mixing, the systems were placed in a water bath for 8 h to separate the two phases. The top and bottom phases were then separated with pipets (the bottom phase is taken through the top phase using a small positive pressure to avoid contamination). Each phase was kept in the water bath and was shaken violently before using. The compositions of each phase were determined from phase diagram data in the literature, using the average tie-line slope method as proposed by Zaslavsky (1995). The phase diagrams of $PEG + (NH_4)_2SO_4$ and PEG+ K₃PO₄ systems are from our own research group (Mei, 1988), PEG + xK_2HPO_4 + KH_2PO_4 (*x* is the molar ratio of K_2HPO_4 to KH_2PO_4 , x = 1.42, pH = 7.0) systems from Albertsson (1986), PEG + K₂HPO₄ and PEG4000 + $xK_2HPO_4 + KH_2PO_4$ (at different pH or x values) systems from Peng et al. (1994), and PEG + Na₂SO₄, PEG + Na_2CO_3 , and PEG + MgSO₄ systems from Snyder et al. (1992), respectively. The density of each phase was also determined to be $\pm 0.2 \text{ kg} \cdot \text{m}^{-3}$ using a 5 cm³ density bottle and a 0.1 mg balance.

Interfacial Tension Measurements. A self-constructed spinning drop tensiometer was used in this work to determine the interfacial tension. We have reported its construction and calibration elsewhere (Wu et al., 1996) and will not describe the details here. The apparatus is capable of determining very low interfacial tensions (<0.01 $mN \cdot m^{-1}$) with a precision of 3%. For interfacial tensions larger than 0.05 mN \cdot m⁻¹, the apparatus has been tested by determining the interfacial tension of butan-1-ol + water, 2-methylpropan-1-ol + water, butyl acetate + water, butan-1-ol + air, and some PEG + dextran + water systems, with an error of about 3%. The temperature of the apparatus was thermostated at the determination temperature to ± 2 °C using an outer air bath. The spinning drop tensiometer consists of a one-side sealed, Pyrex glass tube which spins about its axis of symmetry in a horizontal position. The rotating tube was filled with the bottom phase using a 10 cm³ syringe; a tube lid with a small central hole was put on to avoid the liquid flowing out. Then a small drop of top phase (usually $0.5-5 \ \mu L$)

^{*} To whom correspondence should be addressed.

Differe	ence ($\Delta \rho$), Tie-Lii	ie Lengtl	h (TLL), an	d Inte	rfacial Tens	sion (σ) ^a		crences (1004 // 4		b), Dei	isity
100 W _A	$100 W_{\rm B}$	$100\Delta W_{\rm A}$	$100\Delta W_{\rm B}$	$\Delta \rho / \mathbf{kg} \cdot \mathbf{m}^{-3}$	TLL	$\sigma/mN\cdot m^{-1}$	100 <i>W</i> _A	$100 W_{\rm B}$	$100\Delta W_{\rm A}$	$100\Delta W_{\rm B}$	$\Delta \rho / \text{kg} \cdot \text{m}^{-3}$	TLL	$\sigma/mN \cdot m^{-1}$
]	PEG4000 (A) + xK_2H	$PO_4 + KH_2P$	04	
12.00	P	EG1000 (A	$(NH_4)_2$	SO_4 (B), at 2	5 °C	0.0190	0.20	19.45	(x = 0.35)	3, pH = 6.0)) (B), at 25 °	C	0 0279
15.00	14.18	24.20	12.00	20.5	27.40	0.0180	9.38	12.45	11.75	0.55	30.3 41.2	13.44	0.0372
16.75	15.50	35.25	19.75	43.8	40.40	0.265	9.89	13.15	18.92	10.60	49.3	21.69	0.0895
18.50	16.00	41.20	22.75	56.7	47.06	0.501	9.86	13.88	22.04	12.86	60.3	25.52	0.133
	D	FC 2000 (A	$) \pm (NH_{\rm e})_{\rm e}$	$SO_{1}(\mathbf{R}) $ at 2	5 °C				PEG4000 ($y = 1.26$	$(A) + xK_2H$	$(PO_4 + KH_2P)$	O_4	
9.00	12.45	21.00 (A	9.80	13.2 SO4 (D), at 2	23.17	0.0211	10.05	10.71	(x - 1.20)	, рп — 7.0 7.46	38.6	17.01	0.0511
9.00	13.40	27.10	12.60	16.7	29.89	0.0870	10.65	11.13	19.96	9.70	46.5	22.19	0.101
9.00	14.90	31.73	15.30	22.6	35.23	0.214	11.37	11.47	23.35	11.35	54.0	25.96	0.144
9.00	15.70	34.40	16.65	25.4	38.22	0.300	11.56	12.03	26.09	13.01	60.2	29.15	0.209
							12.43	12.88	29.85	15.34	74.4	33.56	0.301
	$\mathbf{DEC}(A000 (A) + (\mathbf{NUL}) \mathbf{CO} (B) + \mathbf{C}^{*}(\mathbf{C})$						PEG4000 (A) + xK_2HPO_4 + KH_2PO_4						
7.00	10.05	EG4000 (A 10 35	$(NH_4)_2$ 7 05	SO_4 (B), at 2	5°C	0.0200	0.05	0.84	(X = 3.5)	$p_{1} p_{1} = 8.0$	97 A	19 11	0.0201
7.00	12.00	23.83	10.09	10.6	25.88	0.103	9.31	9.92	14.92	6.88	32.3	16.43	0.0434
12.00	11.30	28.06	12.72	15.0	30.81	0.208	9.40	10.66	19.42	9.12	40.8	21.45	0.104
12.90	12.46	32.20	14.70	20.9	35.40	0.342	9.87	10.86	21.82	10.37	48.9	24.16	0.159
							10.81	11.22	25.57	12.34	52.7	28.39	0.201
	PC	GE20000 (A	(NH_4)	₂ SO ₄ (B), at 2	25 °C				PEG1000	$(A) + K_3 P G$	O ₄ (B), at 25	°C	
8.00	8.62	17.24	6.57	1.5	18.45	0.0105	15.07	12.25	18.05	10.85	108.7	21.06	0.386
10.00	8.55	22.57	8.25	4.7	24.03	0.0503	15.08	13.10	24.75	14.15	116.4	28.51	0.527
10.00	9.13	32.00	9.41 11.84	9.5	34.12	0.203	14.98	15.04	29.05 32.80	17.13	133.2	34.25	0.715
		DEC 1500	(A) .JZ II										
		x = 1.42	$(A) + xK_2 \Pi$ 2. pH = 7.0	$(B). at 20^{\circ}$	C_4				PEG4000	$(A) + K_2 P($	O₄ (B), at 25 '	°C	
10.74	13.66	18.92	11.03	65.2	21.90	0.0732	9.92	10.09	14.15	7.10	54.4	15.83	0.251
9.99	15.21	23.96	14.02	83.3	27.76	0.181	9.84	11.40	21.15	10.25	64.0	23.50	0.394
9.28	16.67	27.48	16.34	98.0	31.97	0.266	10.32	13.04	29.10	13.75	83.9	30.69	0.585
0.00	16.15	30.52	16.55	110.5	33.72	0.425	9.97	14.00	32.02	15.15	92.0	30.15	0.747
		PEG4000 (x = 1.45)	$(A) + xK_2H$ $P = 7.0$	$(PO_4 + KH_2P)$	204 C				PFG1000 ($(\Delta) + Na C$	'O ₂ (B) at 25	°C	
9.42	11.37	(x - 1.42) 11.73	., pri – 7.0 5.87	43.8	13.12	0.0200	15.37	6.97	22.44	8.11	40.4	23.86	0.0687
8.67	13.36	22.60	11.85	62.8	25.52	0.204	16.27	7.48	28.41	9.93	55.5	30.10	0.229
7.93	15.30	27.14	14.86	78.6	30.94	0.342	17.93	7.98	34.28	12.39	72.0	36.45	0.459
6.40	19.34	32.64	19.22	110.4	37.88	0.641	20.22	8.45	38.42	14.46	88.4	41.05	0.751
4.07	23.37	30.14	23.30	136.0	44.04	1.19	22.11	9.55	43.03	17.09	109.0	40.32	1.20
		PEG6000 ($(A) + xK_2H$	$(PO_4 + KH_2P)$	PO_4				DEC 4000 ($(\Lambda) \perp N_{2}$	(D. (B) at 95	°C	
8.26	10.65	17.55	, pri = 7.0 7.71	34.5	19.17	0.0530	14.04	6.44	26.30	7.88	36.4	27.46	0.189
7.79	12.17	22.73	10.50	50.0	25.04	0.161	16.885	7.03	33.77	10.80	52.1	35.45	0.477
7.41	13.27	25.18	12.02	57.3	27.90	0.213	18.90	7.945	37.80	13.07	70.7	40.00	0.897
7.04	14.37	27.63	13.53	66.2	30.76	0.268	21.37	8.605	42.74	15.35	88.1	45.41	1.33
							23.203	9.70	40.47	17.90	110.0	49.92	1.99
	I	PEG20000	$(A) + xK_2H$	$(P)_4 + KH_2$	PO ₄				DEC 1000	$(\Lambda) \perp N_{\Omega} S$	(D) (D) at 95	۰C	
10.04	7.92	(x - 1.42) 5.89	2.00 - 7.0	16.7	6.22	0.0091	15.90	9.10	23.6	$(A) + Na_2 S$ 10.6	62.0	25.87	0.0809
9.91	8.36	11.30	4.05	22.0	12.00	0.0288	18.35	9.25	31.1	14.2	85.2	34.19	0.220
9.69	8.94	15.28	5.63	28.6	16.28	0.0686	18.30	10.30	35.0	15.8	99.3	38.40	0.410
9.30	9.97	20.32	7.35	34.1	21.61	0.0870	18.90	11.10	38.2	17.3	113.4	41.93	0.633
	1	PEG1000 (A) + K_2HP	O ₄ (B), at 25	°C				PEG4000 ($(A) + Na_2S$	O ₄ (B), at 25	°C	
11.68	12.25	22.34	10.43	41.5	24.65	0.0250	12.45	8.50	20.1	8.00	43.0	21.63	0.248
13.33	12.65	29.74	14.17	75.9	32.94	0.146	14.075	8.725	24.1 28.5	9.50	51.4 60.4	25.90	0.368
13.86	15.34	34.11	21.31	123.8	40.22	0.524	17.65	9.90	20.5 34.7	13.7	78.9	37.31	0.800
	1	ጋድር ያበሰበ ($(\Lambda) \perp K HE$	O. (B) at 25	°C				DEC 1000	$(\Lambda) \perp M\sigma S$	() (B) at 25	°C	
10.43	10.46	18.86	$A_{1} + A_{2} + A_{2$	42.0	20.61	0.0436	18.45	8.25	24.0	(A) + MgS 9.30	77.8	25.74	0.0589
11.13	10.66	22.01	9.65	50.6	24.03	0.0742	18.65	8.85	29.3	11.3	96.4	31.4	0.155
12.12	11.12	27.49	12.57	62.8	30.23	0.140	19.35	9.40	33.2	12.9	114.2	35.62	0.280
13.07	11.64	31.43	15.03	74.0	34.84	0.280	19.90	9.80	35.4	13.7	123.9	37.96	0.372
	1	PEG4000 (A) + K_2HP	O ₄ (B), at 25	°C				PEG4000	(A) + MgS	O ₄ (B), at 25	°C	
9.90	8.99	10.96	4.57	25.0	11.87	0.0270	15.10	7.65	20.6	9.10	72.0	22.52	0.308
9.97	9.08 9.91	13.61 21.86	5.59 9.21	28.5 40 0	14.71 93.79	0.0420	10.85 18.60	8.25 8.25	25.1 27 5	11.0 19.1	88.6 90 s	27.4	0.532
10.45	10.28	26.00	11.67	40.9 50.4	28.50	0.169	19.40	8.80	29.9	13.1	108.8	32.64	0.785
12.48	11.43	31.10	15.59	65.9	34.79	0.316							

^{*a*} *x* is the molar ratio of K₂HPO₄ to KH₂PO₄. The phase diagrams of PEG + (NH₄)₂SO₄ and PEG + K₃PO₄ systems are from our own research group (Mei, 1988), PEG + xK_2 HPO₄ + KH₂PO₄ (*x* = 1.42, pH = 7.0) systems at 20 °C from Albertsson (1986), PEG + Na₂CO₃, PEG + Na₂SO₄, and PEG + MgSO₄ systems from Snyder et al. (1992), and PEG + K₂HPO₄ and PEG + xK_2 HPO₄ + KH₂PO₄ (at different WSO₄ system (1986)). pH or x values) systems from Peng et al. (1994).

Table 1. System Composition (100 W_A and 100 W_B), Phase Concentration Differences (100 ΔW_A and 100 ΔW_B), Density

Table 2. Correlation Results of Interfacial Tension versus TLL, ΔW_A , and ΔW_B for PEG (A) + salt (B) Systems with Eqs 4–6

system	a_1	b_1	a_2	b_2	a_3	b_3
$PEG1000 + (NH_4)_2SO_4$	-10.59	6.19	-10.42	6.31	-8.16	5.82
$PEG2000 + (NH_4)_2SO_4$	-8.99	5.37	-8.88	5.45	-6.64	5.03
$PEG4000 + (NH_4)_2SO_4$	-8.68	5.35	-8.75	5.55	-5.66	4.50
$PEG20000 + (NH_4)_2SO_4$	-8.06	4.85	-7.89	4.82	-5.98	5.01
$PEG1500 + xK_2HPO_4 + KH_2PO_4 (x = 1.42, pH = 7.0)$	-5.86	3.53	-5.73	3.60	-4.59	3.33
$PEG4000 + xK_2HPO_4 + KH_2PO_4 (x = 1.42, pH = 7.0)$	-5.37	3.29	-5.36	3.43	-3.90	2.91
$PEG6000 + xK_2HPO_4 + KH_2PO_4 (x = 1.42, pH = 7.0)$	-5.73	3.49	-5.78	3.64	-3.85	2.93
$PEG20000 + xK_2HPO_4 + KH_2PO_4 (x = 1.42, pH = 7.0)$)) -3.55	1.90	-3.51	1.91	-2.59	1.80
$PEG1000 + K_2HPO_4$	-9.92	5.96	-10.66	6.63	-5.78	4.15
$PEG2000 + K_2HPO_4$	-5.85	3.41	-5.85	3.51	-4.13	3.02
$PEG4000 + K_2HPO_4$	-3.98	2.23	-3.96	2.28	-2.86	1.98
$PEG4000 + xK_2HPO_4 + KH_2PO_4$ (x = 0.353, pH = 6.0)) -3.70	1.99	-3.62	2.02	-3.00	1.90
$PEG4000 + xK_2HPO_4 + KH_2PO_4 (x = 1.26, pH = 7.0)$	-4.81	2.81	-4.73	2.85	-3.66	2.66
$PEG4000 + xK_2HPO_4 + KH_2PO_4 (x = 3.55, pH = 8.0)$	-4.34	2.52	-4.25	2.54	-3.32	2.43
$PEG1000 + K_3PO_4$	-2.21	1.35	-2.10	1.33	-1.86	1.39
$PEG4000 + K_3PO_4$	-2.19	1.32	-2.06	1.26	-1.80	1.39
$PEG1000 + Na_2CO_3$	-6.99	4.25	-6.99	4.33	-3.93	3.27
$PEG4000 + Na_2CO_3$	-6.43	3.96	-6.61	4.14	-3.30	2.88
$PEG1000 + Na_2SO_4$	-7.09	4.23	-6.93	4.24	-5.39	4.16
$PEG4000 + Na_2SO_4$	-3.41	2.10	-3.34	2.10	-2.53	2.13
$PEG1000 + MgSO_4$	-7.93	4.76	-7.79	4.76	-5.82	4.75
$PEG4000 + MgSO_4$	-3.95	2.55	-3.84	2.54	-2.98	2.58

was injected, and the rotating rate of the axis was raised slowly. The above process needs rapid and skillful operation to avoid having the top phase stray to the tube wall. The drop size (diameter and length) at different rotational velocities, ω , was recorded to calculate the interfacial tension. The interfacial tension of each system was measured over a range of 2000 to 7000 rotations per minute (rpm) to guarantee that gyrostatic equilibrium is reached. The estimation method, as developed by Princen et al. (1967), was used to calculate interfacial tension. The estimated accuracy of this method is better than 0.05% and is negligibly small when compared with the uncertainty of the measured drop size. Thus, the total accuracy of the interfacial tension measurement is in agreement with the calibration error of 3%.

Results and Discussion

For each PEG (A) + salt (B) system, Table 1 lists the total compositions $(100 W_A \text{ and } 100 W_B)$, concentration difference of PEG $(100\Delta W_A)$, concentration difference of salt $(100\Delta W_B)$, density difference between the phases $(\Delta\rho)$, the tie-line length (TLL) and interfacial tension (σ) studied at the given temperature. ΔW_A , ΔW_B , $\Delta\rho$, and TLL are defined as follows:

$$\Delta W_{i} = W_{i}^{T} - W_{i}^{B} \qquad i = A \text{ or } B$$
(1)

$$\Delta \rho = \rho^{\mathrm{T}} - \rho^{\mathrm{B}} \tag{2}$$

$$TLL = 100(\Delta W_{\rm A}^{2} + \Delta W_{\rm B}^{2})^{1/2}$$
(3)

where the superscripts T and B stand for the top phase and the bottom phase, respectively. W_A and W_B are the mass fractions of PEG and salt, respectively. In Table 1, $xK_2HPO_4 + KH_2PO_4$ is the mixed salt, the molar ratio, *x*, of K_2HPO_4 to KH_2PO_4 , and therefore the pH value, may be different. Table 2 shows the correlation results according to the following three equations as adopted from the literature (Bamberger et al., 1984; Forciniti et al., 1990):

$$\log \sigma = a_1 + b_1 \log(\text{TLL}) \tag{4}$$

$$\log \sigma = a_2 + b_2 \log(100 \Delta W_{\rm A}) \tag{5}$$

$$\log \sigma = a_3 + b_3 \log(100 \Delta W_{\rm B}) \tag{6}$$

Figure 1. Log-log plots of interfacial tension versus tie line length (TLL) for PEG + $(NH_4)_2SO_4$ systems at 25 °C: (\bigcirc) PEG1000; (\square) PEG2000; (+) PEG4000; (\diamond) PEG20000.

where a_i and b_i are correlation parameters. It is found that the above three equations provide good fits to the experimental data with most of the correlation coefficients being better than 0.98 (not shown).

Figures 1 and 2 are log-log plots of interfacial tension versus TLL and $\Delta W_{\rm B}$, respectively, for PEG (A) + (NH₄)₂-SO₄ (B) systems. In general, increasing the molecular weight of polymer increases the interfacial tension. This can best be seen by referring to the log-log plots of σ versus $\Delta W_{\rm B}$. For example, the log-log plots of σ versus TLL in Figure 1 show that the interfacial tension of the PEG20000 + (NH₄)₂SO₄ system is below that of the PEG4000 +(NH₄)₂SO₄ system at the same TLL value, but the log-log plots of σ versus $\Delta W_{\rm B}$ in Figure 2 reflect the correct relationship of increasing interfacial tension with increasing molecular weight of polymer at the same $\Delta W_{\rm B}$ value. A similar situation also occurs in PEG + K₃PO₄ systems. It reveals that the salt concentration and the unsymmetrical partitioning of salt between the two bulk phases are the primary determining factors which affect the dependence of interfacial tension on polymer molecular weight, while the total composition (represented by the

Figure 2. Log–log plots of interfacial tension versus salt difference $(100\Delta W_B)$ for PEG + $(NH_4)_2SO_4$ systems at 25 °C: (\bigcirc) PEG1000; (\square) PEG2000; (+) PEG4000; (\diamond) PEG20000.

Figure 3. Log–log plots of interfacial tension versus salt difference $(100 \Delta W_B)$ for PEG4000 + phosphate systems at 25 °C: (\bigcirc) $xK_2HPO_4 + KH_2PO_4$, x = 0.353, pH = 6.0; (\square) $xK_2HPO_4 + KH_2PO_4$, x = 1.26, pH = 7.0; (\triangle) $xK_2HPO_4 + KH_2PO_4$, x = 3.55, pH = 8.0; (+) K_2HPO_4 ; (×) K_3PO_4 .

plots of σ versus TLL) and the polymer concentration are the secondary ones. It can also be inferred from the correlation results in Table 2 that the slopes, b_i , have a general trend of decreasing with increasing polymer molecular weight. Exceptions to this trend may be attributed to experimental errors of the interfacial tension and the tie-line data of phase diagrams.

It is found that the salt type has also a very strong influence on the interfacial tension. Figure 3 shows the log–log plots of σ versus $\Delta W_{\rm B}$ at 25 °C for PEG4000 + xK_2 HPO₄ + KH₂PO₄ (at different pH or x values), PEG4000 + K_2 HPO₄, and PEG4000 + K_3 PO₄ systems. A tendency of increasing interfacial tension with increasing pH value is found. It implies that the higher valence of phosphate has a larger influence on the interfacial tension, and the order of the increasing interfacial tension is PO₄³⁻ > HPO₄²⁻ > H₂PO₄⁻. As to the interfacial tension of PEG + sulfate systems, Figure 4 gives the log–log plots of σ versus $\Delta W_{\rm B}$. The order of increasing interfacial tension is Mg²⁺ > Na⁺ > NH₄⁺.

Figure 4. Log–log plots of interfacial tension versus salt difference $(100\Delta W_B)$ for PEG1000 + sulfate and PEG4000 + sulfate systems at 25 °C: (\Box) PEG1000 + (NH₄)₂SO₄; (\odot) PEG1000 + Na₂SO₄; (\triangle) PEG1000 + MgSO₄; (+) PEG4000 + (NH₄)₂SO₄; (×) PEG4000 + Na₂SO₄; (*) PEG4000 + MgSO₄.

Acknowledgment

We thank Mr. Zi-Yuan Zhu for his cooperation in this work.

Literature Cited

- Albertsson, P. A. Partition of Cell and Macromolecules, 3rd ed.; Wiley: New York, 1986.
- Bamberger, S.; Geoffrey, V.; Seaman, F.; Sharp, K. A.; Brooks, D. E. The effects of Salts on the Interfacial Tension of Aqueous Dextran Poly(ethylene Glycol) Phase Systems. *J. Colloid Interface Sci.* 1984, 99, 194–200.
- Forciniti, D.; Hall, C. K.; Kula, M. R. Interfacial Tension of Polyethyleneglycol-Dextran-Water Systems. Influence of Temperature and Polymer Molecular Weight. J. Biotechnol. 1990, 16, 279–296.
- Jafarabad, K. R.; Sawant, S. B.; Joshi, J. B. Enzyme and Protein Mass Transfer Coefficient in Aqueous Two-Phase Systems–I. Spray Extraction Columns. *Chem. Eng. Sci.* 1992, 47, 57–68.
- Mei, L. H. Phase Equilibrium of Aqueous Two-Phase Systems and Their Applications in the Separation and Purification of Enzymes. Master Thesis of Zhejiang University, Hangzhou, P.R. China, 1988.
- Peng, Q.; Li, Z.; Li, Y. Thermodynamics of Potassium Hydrogen Phosphate-Potassium Dihydrogen Phosphate-Polyethylene Glycol Aqueous Two-Phase Systems. *Fluid Phase Equilib.* **1994**, *95*, 341– 357.
- Princen, H. M.; Zia, I. Y. Z.; Mason, S. G. Measurements of Interfacial Tension from the Shape of a Rotating Drop. J. Colloid Interface Sci. 1967, 23, 99–107.
- Ryden, J.; Albertsson, P. A. Interfacial Tension of Dextran-Polyethylene Glycol-Water Two-Phase Systems. *J. Colloid Interface Sci.* **1971**, *37*, 219–222.
- Snyder, S. M.; Cole, K. D.; Szlag, D. C. Phase Compositions, Viscosities and Densities for Aqueous Two-Phase Systems Composed of Polyethylene Glycol and Various Salts at 25 °C. J. Chem. Eng. Data 1992, 37, 268–274.
- Wu, Y. T.; Mei, L. H.; Zhu, Z. Q.; Yu, Z. H. Construction of a Spinning Drop Tensiometer and Determination of Liquid-Liquid Interfacial Tension. J. Chem. Ind. Eng. (Chinese), in press.
- Zaslavsky, B. Yu. Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications; Marcel Dekker: New York, 1995.

Received for review February 5, 1996. Accepted June 4, 1996. $^{\circ}$ We express our thanks to the National Natural Science Foundation of China for the financial support.

JE960044G

[®] Abstract published in Advance ACS Abstracts, July 15, 1996.